
HOME > Search by Achievements Type > Reports View
Reports Detailed Information
https://www.krm.or.kr/krmts/link.html?dbGubun=SD&m201_id=10071187&local_id=10086929
비선형 자기회귀모형의 분포함수를 이용한 규격검정 방법론에 대한 연구
Researcher who has been awarded a research grant by Humanities and Social Studies Support Program of NRF has to submit an end product within 6 months(* depend on the form of business)
- Researchers have entered the information directly to the NRF of Korea research support system
Project Number |
2016S1A5A8019787 |
Year(selected) |
2016 Year
|
the present condition of Project |
종료 |
State of proposition |
재단승인 |
Completion Date |
2017년 10월 29일 |
Year type |
결과보고 |
Year(final report) |
2017년 |

Research Summary
-
Korean
-
본 논문은 시계열 모형들 중 널리 쓰이는 조건부 이분산적 (conditional heteroskedastic) 비선형 자기회귀 (nonlinear autoregressive) 모형을 검정하는 방법론을 연구한다. 모형의 밀도함수나 분포함수를 이용하는 기존의 방법론들과는 달리, 본 연구는 합성곱 (convo ...
본 논문은 시계열 모형들 중 널리 쓰이는 조건부 이분산적 (conditional heteroskedastic) 비선형 자기회귀 (nonlinear autoregressive) 모형을 검정하는 방법론을 연구한다. 모형의 밀도함수나 분포함수를 이용하는 기존의 방법론들과는 달리, 본 연구는 합성곱 (convolution) 에 기반한 분포함수를 이용해서 가설(hypothesis)을 검정(testing)하는 기법을 제시하고, 이 방법론의 점근적 (asymptotic) 그리고 유한표본 (finite-sample) 적 성질을 함께 분석한다. 본 연구가 제시하는 방법이, 동일한 주제에 대한 최근의 유수 논문들에서 제시된 검정방법들 보다 더 정확한 검정결과를 보인다는 점을 다양한 시뮬레이션을 통해서 확인하고, 제안된 방법론을 데이터의 분석에 응용하는 시도를 하게 된다.
-
English
-
The paper proposes a specification test based on the two estimates of distribution function. One is the traditional kernel distribution function estimate and the other is a newly proposed convolution-type distribution function estimate. Asymptotic pro ...
The paper proposes a specification test based on the two estimates of distribution function. One is the traditional kernel distribution function estimate and the other is a newly proposed convolution-type distribution function estimate. Asymptotic properties of the new estimate are studied when the innovation density is known and when it is unknown. The MISE-type statistic based on these estimates is suggested to test parametric specifications of the mean and volatility functions. The relating asymptotic results are obtained and the finite-sample properties are studied based on the bootstrap methodology. A simulation study shows that the proposed test competes favorably to benchmark tests in terms of the empirical level and power.

Research result report
-
Abstract
-
본 논문은 시계열 모형들 중 널리 쓰이는 조건부 이분산적 (conditional heteroskedastic) 비선형 자기회귀 (nonlinear autoregressive) 모형을 검정하는 방법론을 연구한다. 모형의 밀도함수나 분포함수를 이용하는 기존의 방법론들과는 달리, 본 연구는 합성곱 (convo ...
본 논문은 시계열 모형들 중 널리 쓰이는 조건부 이분산적 (conditional heteroskedastic) 비선형 자기회귀 (nonlinear autoregressive) 모형을 검정하는 방법론을 연구한다. 모형의 밀도함수나 분포함수를 이용하는 기존의 방법론들과는 달리, 본 연구는 합성곱 (convolution) 에 기반한 분포함수를 이용해서 가설(hypothesis)을 검정(testing)하는 기법을 제시하고, 이 방법론의 점근적 (asymptotic) 그리고 유한표본 (finite-sample) 적 성질을 함께 분석한다. 본 연구가 제시하는 방법이, 동일한 주제에 대한 최근의 유수 논문들에서 제시된 검정방법들 보다 더 정확한 검정결과를 보인다는 점을 다양한 시뮬레이션을 통해서 확인하고, 제안된 방법론의 다양한 응용을 제시하는 시도를 하게 된다.
-
Research result and Utilization method
-
본 논문의 연구대상인 모형에 적합한 것으로 알려진 특정 자산의 수익률(asset return) 같은 실증 데이터가, 관련 분야에서 잘 알려진 수많은 모수적 모형(parametric models)들 중 어느 모형에 가장 적합한 지를 판정하는데 본 연구의 이론적, 실험적 결과가 도움을 줄 ...
본 논문의 연구대상인 모형에 적합한 것으로 알려진 특정 자산의 수익률(asset return) 같은 실증 데이터가, 관련 분야에서 잘 알려진 수많은 모수적 모형(parametric models)들 중 어느 모형에 가장 적합한 지를 판정하는데 본 연구의 이론적, 실험적 결과가 도움을 줄 것으로 기대된다. 이론적으로도, 본 논문이 제시한 합성 곱(convolution)에 의한 분포함수(distribution function)의 추정 방식이 선행 연구에서 증명한 밀도함수(density function)의 추정법에서 와 같이 root-n- consistency을 이룬다는 흥미로운 사실을 보인 점은 관련 후속 연구에도 활용될 수 있는 기여라고 하겠다.
-
Index terms
-
규격검정, 분포함수, 합성 곱, 경험적 분포함수, 자기회귀 모형, 비선형 성, 조건부 이분산 성.
-
Examination field of requesting this research issues( The ranking of possible field is up to 3rd place)
-
1Ranking :
사회과학
>
경제학
>
경제학일반
>
계량경제/경제통계/비교경제
-
List of digital content of this reports
-
This document, it is necessary to display the original author and you do not have permission
to use copyrighted material for-profit
-
In addition , it does not allow the change or secondary writings of work