연구성과물검색
유형별/분류별 연구성과물 검색
HOME ICON HOME > Search by Achievements Type > Reports View

Reports Detailed Information

https://www.krm.or.kr/krmts/link.html?dbGubun=SD&m201_id=10011547&local_id=10027443
터보 압축기용 임펠러의 동시공학적 개념에 의한 최적설계 및 5축 가공의 최적화
Reports NRF is supported by Research Projects( 터보 압축기용 임펠러의 동시공학적 개념에 의한 최적설계 및 5축 가공의 최적화 | 2005 Year 신청요강 다운로드 PDF다운로드 | 임표(전북대학교) ) data is submitted to the NRF Project Results
Researcher who has been awarded a research grant by Humanities and Social Studies Support Program of NRF has to submit an end product within 6 months(* depend on the form of business)
  • Researchers have entered the information directly to the NRF of Korea research support system
Project Number D00010
Year(selected) 2005 Year
the present condition of Project 종료
State of proposition 재단승인
Completion Date 2007년 03월 26일
Year type 결과보고
Year(final report) 2007년
Research result report
  • Abstract
  • Turbo machinery industry grows gradually up to rapid expansion of automotive and aircraft industries. A impeller is a core part of turbo compressor used in hybrid vehicle and airplane of the future. Therefore, it has to be designed to improve performance efficiency and obtain structural stability. Manufacturing of impeller is required to need expert knowledge and spend many manufacturing time. To the contrary, the market wants to be flexible environment and reduce production time. Also, toolpath is generated by five-axis machine, not by three axis, because it has twisted surface. Consequently, interaction of design, analysis and machining operation has to be obtained efficiently to produce the impeller and high productivity is accomplished by concurrent engineering concept organically connected from design step to machining step. This study presents a criterion for efficient interaction of each step and tries to optimize operations by the application of statistical methods

    This study has two subjects for optimal design and 5-axis machining of the impeller
    The former is the method for optimizing design parameter of impeller.
    Impeller design needs aerodynamic and structural analysis, but only structural analysis must be taken into consideration because capability of the floor shop is limited. Stress analysis is executed for acquiring structural stability, and Taguchi design of experiments is employed as tactics for optimal design.
    Firstly, it is described to make a primary model by characteristic curve. For design of experiment, characteristics are determined to stress distribution and max stress, and factors and levels are selected by consideration of the impeller feature. Experiments is designed by tables of orthogonal arrays.
    Secondly, S/N ratio of stress distribution in the blade surface and means of max stress of the impeller are examined by analysis of variance (ANOVA)
    Finally, optimum design parameters are searched and confidence of experiment verified by estimating population means

    The latter is five-axis cutting method of the impeller.
    Response surface method is employed to select optimal cutting condition and predict productivity of impeller machining.
    Firstly, response factors are determined as machining time and machining error for the prediction of productivity. Then, regression linear model is considered as single surface to get only machining time in the rough cutting and dual surface to get both machining time and machining error in the finishing. Independent factors are selected by considering the feature of rough cutting and finish cutting. Experiments is projected by central composite design with axis point.
    Secondly, fitted response surface between independent factors and response factors is estimated. Machining time and machining error are predicted by regression model.
    Finally, optimum cutting condition is searched and feasible area of cutting condition is investigated by overlaid contour plot.

    These studies are presented to select optimum design of parameter and optimal cutting condition of impeller, which is proposed to use statistical method as Taguchi design of experiments and response surface method. Consequently, High productivity is acquired by standing criterion of design and reducing manufacturing time in the production operation of impeller
  • Research result and Utilization method
  • 현재 터보기기용 임펠러의 생산은 주로 임펠러 부품의 유동 해석 등의 고려사항이 많은 구조적 특성상 많은 업체들이 설계 기술을 가지지 못한 상황이기 때문에 주로 하청업체로써 임가공에 의하여 의존하고 있다. 이와 같은 문제점 때문에 설계 변경에 있어서 어떠한 객관적 기준과 DB구축이 부족한 형편이며, 설계 변경에 따른 최종 결과물이 요구 성능 및 안정성에 적절한지에 대한 평가는 수행할 수 없었다. 또한, 현장에서는 생산성의 향상 및 유지시키기 위한 객관적인 방법론을 가지지 못한 채 기존에 사용되어지는 정형화된 조건을 이용하였다. 그리고 이와 같이 설계 부문과 생산부문이 분리되어진 관계로 인하여 피드백 과정에서 일어나는 문제점을 무시할 수 없었다.
    이에 본 연구에서 제시한 동시 공학적 개념의 도입으로 이러한 구조해석, 설계변경, 부품생산 간의 유기적 관계의 구축함으로써 생산성 향상에 도움을 줄 것이며, 설계 변수의 최적화 및 5축 임펠러 가공의 적절한 생산성을 유지시키기 위한 가공조건 선정을 위한 통계적 방법론의 도입은 매우 효율적인 방법론이 될 것이라고 보여진다.
    특히 공정특성에 맞은 데이터를 추출하여 이를 통계적 방법을 통하여 적용하고 이를 통해 생산성 예측을 가능하게 할 수 있는 선형 모델의 개발하고 기준을 정하여 대책을 수립하고자 한 시도는 현장 생산업체에 의한 직관적이고 경험적 방법에 의한 방식보다 객관적인 설계 및 생산 기준을 확립할 수 있으리라고 보여진다.
  • Index terms
  • Impeller, CAE, Stress Distibution, Taguchi Design Of Expriments, ANOVA, Optimal Design, Rough cutting, Fininsh cutting, Response Surface Method, optimal cutting condition
  • List of digital content of this reports
데이터를 로딩중 입니다.
  • This document, it is necessary to display the original author and you do not have permission
    to use copyrighted material for-profit
  • In addition , it does not allow the change or secondary writings of work
데이터 이용 만족도
자료이용후 의견
입력